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Synopsis

This Kleine AG grew from the wish to understand some aspects of Deligne’s axiomatic definition
of Shimura varieties and their canonical models, see [1]. The aims of this program are to illustrate
the significance of such a definition for arithmetics by studying the modular curve (Talks 1 and
2), to motivate the general definition of Shimura variety by formulating the Siegel case (Talk 3),
to give Deligne’s definition (Talk 4) and to prove that the moduli description of the modular
curve yields the canonical model in the case of GL2 (Talk 5). We now describe these contents in
more detail.

The modular curve

Consider the upper half plane h together with its action by GL2(R)+ through Moebius transfor-
mations. Recall that the principal congruence subgroup Γ(N) for N ≥ 1 is defined as

Γ(N) := ker
(
SL2(Z) −→ SL2(Z/NZ)

)
.

A subgroup Γ ⊆ SL2(Z) is called congruence subgroup, if it contains Γ(N) for some N . An
important special case is

Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z)

∣∣ c ≡ 0 mod (N)
}
.

For any congruence subgroup Γ, we define the modular curve of level Γ as the quotient

YΓ := Γ \ h.

It is naturally given the structure of a smooth affine complex algebraic curve and we denote its
compactification by XΓ. On h, there is a natural GL2(R)+-equivariant line bundle ω, the so-
called Hodge bundle. Γ-invariant sections of ω⊗k that also satisfy a certain growth condition at
the boundary XΓ \ YΓ are called cuspidal modular forms of weight k and level Γ. We denote the
space of such forms by Sk(Γ). For example, ω⊗2 ∼= Ω1

h and thus cuspidal modular forms of weight
2 are nothing but certain Γ-invariant differential forms. More precisely, the growth condition
translates into an identification

S2(Γ) = H0(XΓ,Ω
1
XΓ

).

By Hodge decomposition, this implies

S2(Γ)⊕ S2(Γ) ∼= H1(XΓ,C). (1)

Of course, GL2(R)+ does not act on XΓ. Still, it is possible to define the family of so-called
Hecke operators: Let N ≥ 1 be minimal such that Γ(N) ⊆ Γ. For any d ≥ 1, (d,N) = 1,
there is a correspondence Td on XΓ, called Hecke correspondence, which acts on Sk(Γ). The
correspondence also acts on H1(XΓ,C) and, by naturality, the isomorphism (1) is equivariant.
Let Tk(Γ) ⊆ EndC(Sk(Γ)) be the Q-subalgebra generated by the Td.
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Theorem. For k,N ≥ 1, the ring Tk(Γ0(N)) is a finite-dimensional semi-simple commutative
Q-algebra and the representation Sk(Γ0(N)) is defined over Q.

The starting point for the theory of canonical models is the observation that the curves
YΓ, the descent of the bundles ω⊗k to YΓ and the Hecke correspondences Td can all be defined
algebraically over a number field. To explain ideas, we restrict to the case k = 2 and Γ = Γ0(N)
from now on. Then Y0(N) := YΓ0(N) is the coarse moduli space of pairs (E,C) of elliptic curves
E together with a cyclic subgroup C ⊆ E of order N . The Hecke correspondence Td (restricted
to the open Y0(N)) is the coarse moduli of triples (E,C,D) where (E,C) is as above and D ⊆ E
is a subgroup of order d, with map

Td|Y0(N)×Y0(N) −→ Y0(N)× Y0(N)

(E,C,D) 7−→
(
(E,C), (E/D, (C +D)/D)

)
.

Thus both Y0(N) and the Td are defined over SpecQ. In particular, this shows that the repre-
sentation of the Hecke algebra on S2(Γ0(N)) = H0(X0(N),Ω1

X0(N)) is defined over Q which was
one of the assertions of the above theorem.

We may also consider the Gal(Q/Q)-representation H1
ét(X0(N)Q,Q`). By naturality, it carries

a T2(Γ0(N))-action for which both the Galois action and the comparison isomorphism

H1(X0(N)(C),C) ∼= H1
ét(X0(N)Q,Q`)⊗Q`

C

are equivariant. Recall that the set of Frobenius elements Fp is dense in Gal(Q/Q) and thus their
images determine any continuous Galois representation. For almost all primes p, X0(N) has good
reduction at p and the action of Fp can be computed on the special fiber. Analyzing the moduli
description given above yields the famous Eichler-Shimura congruence relation

Tp = Fp + F ∗p ,

where F ∗p results from a certain involution applied to the Frobenius. It follows that Fp is a zero
of

(U − Fp)(U − F ∗p ) = U2 − TpU + p ∈ T2(Γ0(N))[U ].

In terms of eigenvalues, this implies that if ap is an eigenvalue of Tp on S2(Γ0(N)) with multiplicity
n(ap), then Fp has the two roots of U2−apU+p as eigenvalues, each also with multiplicity n(ap).
This characterizes the Galois representation attached to X0(N) in terms of the purely analytical
object S2(Γ0(N)).

We may apply the above to the Hasse-Weil conjecture for X0(N). Recall that to any algebraic
variety V over SpecQ there is associated its Hasse-Weil ζ-function

ζ(i)(s, V/Q) :=
∏
p

det
(

1− p−sFp|H i
ét(VQ,Q`)Ip

)−1
,

ζ(s, V/Q) :=

2dim(V )∏
i=0

ζ(i)(s, V/Q)(−1)i

which is conjectured to extend meromorphically to the complex plane and to satisfy a functional
equation. One strategy to prove this is to relate ζ(s, V/Q) to the L-function of an automorphic
representation. The latter arises analytically, so its analytical properties are easier understood.
In the case at hand, one can associate an L-function L(s, f) to any T2(Γ0(N))-eigenfunction
f ∈ S2(Γ0(N)) and prove both the meromorphic continuation and the functional equation.
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Theorem (Shimura [7]). Let f1, . . . , fr ∈ S2(Γ0(N)) be a basis consisting of T2(Γ0(N))-eigenvectors.
Then, up to possibly the Euler factors at the finitely many primes p|N ,

ζ(1)(s,X0(N)/Q) =
r∏

i=1

L(s, fr).

In particular, ζ(s,X0(N)/Q) extends meromorphically to the complex plane and satisfies a func-
tional equation.

Underlying the above line of reasoning is an association of a Galois representation ρf to
a Hecke eigenform f ∈ S2(Γ0(N)). Deligne extended this to weight k > 2, see [2]. These are
nontrivial instances of the Langlands correspondence, which is conjectured to exist in much
greater generality.

General Shimura Varieties

Variants of the modular curve have been studied for a long time. In general, the place of h is
taken by a hermitian symmetric domain or a finite union thereof X. It has a transitive action of
a real Lie group G(R) and there is an identification

X = G(R)/K∞

for a maximal connected subgroup K∞ ⊆ G(R) such that its image in the adjoint group G(R)ad

is compact. For any arithmetic subgroup Γ ⊆ G(R), one can define both the quotient XΓ := Γ\X
and the notion of Γ-automorphic form. By Bailey-Borel, XΓ is known to be a complex algebraic
variety.

Example. If X = hg is the Siegel half space, then the group is GSp2g(R)+. The arithmetic
subgroups are those coming from symplectic lattices and the quotients Γ\hg have an interpretation
as coarse moduli spaces of polarized abelian varieties with level structure of a certain type.

Beginning from the late 1950s, Shimura studied in numerous cases the possibility of defining
these varieties over number fields and its applications to arithmetic. The point being (in today’s
terminology) that the Galois representations arising in their étale cohomology can often be related
to the automorphic forms side which leads to various cross-relations. Besides the Siegel case,
Shimura studied general moduli problems of PEL-type and some non-PEL-type examples related
to quaternion algebras over various fields.

In 1971, Deligne systematized the setup of Shimura and gave the purely group-theoretical
definition of a Shimura variety and its canonical model over some specified number field, see [1].
He proves the uniqueness and, in case the group theoretic datum is of Hodge type, existence of
such a model. It was later shown by Borovoi and Milne that canonical models exist in general.

Deligne also clarified the role played by the connected components of Shimura varieties. In
the case of the modular curve sketched above, we had to restrict to level of the form Γ0(N) to
get a model over Q. For general Γ, the canonical model of XΓ is defined over a finite extension
of Q which depends on Γ. In Deligne’s setup, h and SL2 are replaced by the non-connected C \R
and GL2. Then the whole tower of quotients is defined over SpecQ, with an explicit action of
Gal(Q/Q) on the set of geometric connected components.
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Talks

The first two talks roughly follow the presentation in [8]. The main reference for the modular
curve is still the comprehensive survey [3].

Talk 1 (Analytic theory of the modular curve). Recall the analytic definition of the modular
curve and modular (cusp) forms for some level Γ, see [8, Section 2] and [3, Sections 2 and 7].
Introduce the ring of Hecke operators with its action on the space of cusp forms and interpret
this by an action through correspondences, see [8, Sections 3 and 4] or [3, Section 3]. Finally,
attach an L-function to a new form as in [3, Section 5].

Talk 2 (Arithmetic theory of the modular curve). For simplicity, restrict to the case of level
Γ = Γ0(N). Follow [3, Section 8] to provide a model of the modular curve over Q by considering
it as a moduli space of elliptic curves together with a subgroup of order N . Give a moduli
theoretic interpretation of the Hecke correspondences Tp, thus also defined over Q. Compute the
reduction of Tp at p to prove the Eichler-Shimura congruence relation, see [3, Section 8.5]. Recall
the definition of the Hasse-Weil ζ-function and prove that it is modular in the case at hand as in
[8].

For the remaining three talks, we follow the presentation of Genestier and Ngô in [4], further
information can be found in [2], [5] and [6].

Talk 3 (Siegel upper half space). The aim of this talk is to generalize both the group theore-
tical and the moduli description of the modular curves to higher dimensions, following [4, Section
1]. Recall the notion of a polarized abelian variety over C, culminating in the description [4,
Corollary 1.1.7]. Parameterize polarized abelian varieties by the Siegel half space and prove [4,
Propositions 1.2.3 and 1.2.4]. (For simplicity, you may restrict to the principally polarized case.)
Construct a tower of complex manifolds by adding level structure as in [4, Section 1.3]. Finally,
state the theorem of existence of a moduli space of principally polarized abelian varieties over Q,
thus giving a model over a number field, see [4, Section 2.3] for the definition.

Talk 4 (General Shimura Varieties). Give the definition of a reductive Shimura datum and
the important result [4, Proposition 4.3.2]. The latter also serves as a motivation for the notion of
Shimura datum. Define the Shimura variety attached to a Shimura datum and state the results
[4, Theorem 4.5.2 and Lemma 4.6.1] which show that this defines a tower of algebraic varieties.
Cover the case G = GL2 in detail: Identify the set GL2(Af )× h± with the set of isogeny classes
of elliptic curves E/C together with choices of bases for both H1(E(C),Z) and the full rational
Tate-module Q⊗Z

∏
p Tp(E). Deduce a description of the double quotient

GL2(Q) \
[
GL2(Af )/K × h±

]
as the set of elliptic curves with level structure of type K, up to isogeny. Recover the modular
curves from Talk 1, at least up to connected components. See [4, Section 2.6] as a reference, but
specialize to g = 1 in your talk.

Talk 5 (Canonical models). Define the canonical models of the Shimura varieties attached
to Tori, see [4, Section 5.4]. Give the definition of the reflex field and the canonical model of a
general Shimura variety. Prove that the moduli spaces of elliptic curves with level structure yield
the canonical model for the modular curve (case of GL2).
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